Citation: | Qing Wang, Yinghui Shang, Yong Yang. Quenched-in Liquid in Glass[J]. Materials Futures, 2023, 2(1): 017501. doi: 10.1088/2752-5724/acb8cf |
[1] |
Anderson P W 1995 Through the glass lightly Science 267 1615–6
|
[2] |
Debenedetti P G and Stillinger F H 2001 Supercooled liquids and the glass transition Nature 410 259–67
|
[3] |
Masuhr A, Waniuk T A, Busch R and Johnson W L 1999 Time scales for viscous flow, atomic transport, and crystallization in the liquid and supercooled liquid states of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 Phys. Rev. Lett. 82 2290–3
|
[4] |
Finney J L 1977 Modelling the structures of amorphous metals and alloys Nature 266 309–13
|
[5] |
Tanaka H, Kawasaki T, Shintani H and Watanabe K 2010 Critical-like behaviour of glass-forming liquids Nat. Mater. 9 324–31
|
[6] |
Nagamanasa K H, Gokhale S, Sood A K and Ganapathy R 2015 Direct measurements of growing amorphous order and non-monotonic dynamic correlations in a colloidal glass-former Nat. Phys. 11 403–8
|
[7] |
Hallett J E, Turci F and Royall C P 2018 Local structure in deeply supercooled liquids exhibits growing lengthscales and dynamical correlations Nat. Commun. 9 3272
|
[8] |
Sheng H W, Luo W K, Alamgir F M, Bai J M and Ma E 2006 Atomic packing and short-to-medium-range order in metallic glasses Nature 439 419–25
|
[9] |
Hirata A, Guan P, Fujita T, Hirotsu Y, Inoue A, Yavari A R, Sakurai T and Chen M 2011 Direct observation of local atomic order in a metallic glass Nat. Mater. 10 28–33
|
[10] |
Lubchenko V and Wolynes P G 2007 Theory of structural glasses and supercooled liquids Annu. Rev. Phys. Chem. 58 235–66
|
[11] |
Wool R P 2008 Twinkling fractal theory of the glass transition J. Polym. Sci. B 46 2765–78
|
[12] |
Tanaka H 1999 Two-order-parameter description of liquids. I. A general model of glass transition covering its strong to fragile limit J. Chem. Phys. 111 3163–74
|
[13] |
Tanaka H 1999 Two-order-parameter description of liquids. II. Criteria for vitrification and predictions of our model J. Chem. Phys. 111 3175–82
|
[14] |
Wang W H 2012 The elastic properties, elastic models and elastic perspectives of metallic glasses Prog. Mater. Sci. 57 487–656
|
[15] |
Berthier L and Biroli G 2011 Theoretical perspective on the glass transition and amorphous materials Rev. Mod. Phys. 83 587–645
|
[16] |
Angell C A, Ngai K L, McKenna G B, McMillan P F and Martin S W 2000 Relaxation in glassforming liquids and amorphous solids J. Appl. Phys. 88 3113–57
|
[17] |
Karmakar S, Dasgupta C and Sastry S 2015 Length scales in glass-forming liquids and related systems: a review Rep. Prog. Phys. 79 016601
|
[18] |
Dyre J C 2006 Colloquium: the glass transition and elastic models of glass-forming liquids Rev. Mod. Phys. 78 953–72
|
[19] |
Stevenson J D and Wolynes P G 2010 A universal origin for secondary relaxations in supercooled liquids and structural glasses Nat. Phys. 6 62–68
|
[20] |
Stillinger F H and Debenedetti P G 2013 Glass transition thermodynamics and kinetics Annu. Rev. Condens. Matter 4 263–85
|
[21] |
Mauro J C, Yue Y, Ellison A J, Gupta P K and Allan D C 2009 Viscosity of glass-forming liquids Proc. Natl Acad. Sci. USA 106 19780–4
|
[22] |
Cheng Y Q and Ma E 2011 Atomic-level structure and structure-property relationship in metallic glasses Prog. Mater. Sci. 56 379–473
|
[23] |
Miracle D B 2004 A structural model for metallic glasses Nat. Mater. 3 697–702
|
[24] |
Ma E 2015 Tuning order in disorder Nat. Mater. 14 547–52
|
[25] |
Liu Y H, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A and Chen M W 2011 Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy Phys. Rev. Lett. 106 1–4
|
[26] |
Wang W H 2019 Dynamic relaxations and relaxation-property relationships in metallic glasses Prog. Mater. Sci. 106 100561
|
[27] |
Qiao J C et al 2019 Structural heterogeneities and mechanical behavior of amorphous alloys Prog. Mater. Sci. 104 250–329
|
[28] |
Zhang P, Maldonis J J, Liu Z, Schroers J and Voyles P M 2018 Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy Nat. Commun. 9 1–7
|
[29] |
Yang Q, Peng S X, Wang Z and Yu H B 2020 Shadow glass transition as a thermodynamic signature of β relaxation in hyper-quenched metallic glasses Natl Sci. Rev. 7 1896–905
|
[30] |
Küchemann S and Maaß R 2017 Gamma relaxation in bulk metallic glasses Scr. Mater. 137 5–8
|
[31] |
Wang B, Wang L J, Shang B S, Gao X Q, Yang Y, Bai H Y, Pan M X, Wang W H and Guan P F 2020 Revealing the ultra-low-temperature relaxation peak in a model metallic glass Acta Mater. 195 611–20
|
[32] |
Yu H B and Samwer K 2014 Atomic mechanism of internal friction in a model metallic glass Phys. Rev. B 90 144201
|
[33] |
Chang C, Zhang H P, Zhao R, Li F C, Luo P, Li M Z and Bai H Y 2022 Liquid-like atoms in dense-packed solid glasses Nat. Mater. 21 1240–5
|
[34] |
Vila-Costa A, Gonzalez-Silveira M, Rodríguez-Tinoco C, Rodríguez-López M and Rodriguez-Viejo J 2022 Emergence of equilibrated liquid regions within the glass Nat. Phys. Phys. 19 114–9
|
[35] |
Song S, Zhu F and Chen M 2022 Universal scaling law of glass rheology Nat. Mater. 21 404–9
|
[36] |
Yu H B, Wang W H, Bai H Y, Wu Y and Chen M W 2010 Relating activation of shear transformation zones to β relaxations in metallic glasses Phys. Rev. B 81 1–4
|
[37] |
Yu H B, Richert R and Samwer K 2017 Structural rearrangements governing Johari-Goldstein relaxations in metallic glasses Sci. Adv. 3 e1701577
|
[38] |
Wang Q et al 2015 Unusual fast secondary relaxation in metallic glass Nat. Commun. 6 7876
|
[39] |
Wang Q, Liu J J, Ye Y F, Liu T T, Wang S, Liu C T, Lu J and Yang Y 2017 Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses Mater. Today 20 293–300
|
[40] |
Wu Y et al 2021 Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing Nat. Commun. 12 1–9
|
[41] |
Cangialosi D, Boucher V M, Alegría A and Colmenero J 2013 Direct evidence of two equilibration mechanisms in glassy polymers Phys. Rev. Lett. 111 1–5
|
[42] |
Gallino I, Cangialosi D, Evenson Z, Schmitt L, Hechler S, Stolpe M and Ruta B 2018 Hierarchical aging pathways and reversible fragile-to-strong transition upon annealing of a metallic glass former Acta Mater. 144 400–10
|
[43] |
Perez-De Eulate N G and Cangialosi D 2018 The very long-term physical aging of glassy polymers Phys. Chem. Chem. Phys. 20 12356–61
|
[44] |
Huo L S, Zeng J F, Wang W H, Liu C T and Yang Y 2013 The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass Acta Mater. 61 4329–38
|
[45] |
Wang Q et al 2014 Superior tensile ductility in bulk metallic glass with gradient amorphous structure Sci. Rep. 4 4757
|
[46] |
Ye J C, Lu J, Liu C T, Wang Q and Yang Y 2010 Atomistic free-volume zones and inelastic deformation of metallic glasses Nat. Mater. 9 619–23
|
[47] |
Sun B A, Hu Y C, Wang D P, Zhu Z G, Wen P, Wang W H, Liu C T and Yang Y 2016 Correlation between local elastic heterogeneities and overall elastic properties in metallic glasses Acta Mater. 121 266–76
|
[48] |
Lewandowski J J, Wang W H and Greer A L 2005 Intrinsic plasticity or brittleness of metallic glasses Phil. Mag. Lett. 85 77–87
|
[49] |
Ding J, Patinet S, Falk M L, Cheng Y and Ma E 2014 Soft spots and their structural signature in a metallic glass Proc. Natl Acad. Sci. USA 111 14052–6
|
[50] |
Guan P, Chen M and Egami T 2010 Stress-temperature scaling for steady-state flow in metallic glasses Phys. Rev. Lett. 104 1–4
|
[51] |
Ma J et al 2019 Fast surface dynamics enabled cold joining of metallic glasses Sci. Adv. 5 eaax7256
|
[52] |
Li X et al 2020 Ultrasonic plasticity of metallic glass near room temperature Appl. Mater. Today 21 100866
|