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Abstract
Chalcogenide phase-change materials (PCMs), in particular, the flagship Ge2Sb2Te5 (GST), are
leading candidates for advanced memory applications. Yet, GST in conventional devices suffer
from high power consumption, because the RESET operation requires melting of the crystalline
GST phase. Recently, we have developed a conductive-bridge scheme for low-power
phase-change application utilizing a self-decomposed Ge-Sb-O (GSO) alloy. In this work, we
present thorough structural and electrical characterizations of GSO thin films by tailoring the
concentration of oxygen in the phase-separating GSO system. We elucidate a two-step process
in the as-deposited amorphous film upon the introduction of oxygen: with increasing oxygen
doping level, germanium oxides form first, followed by antimony oxides. To enable the
conductive-bridge switching mode for femtojoule-level RESET energy, the oxygen content
should be sufficiently low to keep the antimony-rich domains easily crystallized under external
electrical stimulus. Our work serves as a useful example to exploit alloy decomposition that
develops heterogeneous PCMs, minimizing the active switching volume for
low-power electronics.
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Future perspectives
The rapidly growing demand for data storage and processing is
posing a serious challenge for the current computing architecture.
Emerging non-volatile memory combines the advantages of both
fast operation and persistent storage, holding great promises to
improve the computing and energy efficiencies by substantially
reducing the heavy data traffic between multiple electronic units.
Among the competing materials candidates, phase-change mater-
ials (PCMs) that exploit phase transitions between the crystalline
and amorphous states are at the forefront for commercialization.
Despite the success of PCMs in high-density binary storage,
e.g. the 3D Xpoint memory products, much efforts are being taken
to further improve the materials properties to enable devices with
lower power consumption, faster switching speed, better thermal
stability, wider contrast window as well as suppressed resist-
ance drift. The design and synthesis of new materials that can
achieve these goals are critical for the development of phase-
change memory devices for multilevel storage, neuro-inspired
computing, photonic computing, and flexible displays.

1. Introduction

The total data volume worldwide has been drastically
increased in the past decades, and is predicted to reach
1023 bytes by 2025. Storing and processing the massive data-
sets quickly and accurately at a manageable energy cost
poses a serious challenge for current electronic devices.
The emerging non-volatile memory [1–3] and neuro-inspired
computing [4–6] technologies hold great promises to cope
with this data crisis. Such novel electronic or optoelectronic
devices rely on the development of new materials, such as
phase-change materials (PCMs) [7–13], resistive-switching
oxides [14], ferroelectric [15] and spintronic materials [16],
two-dimensional materials [17] and polymers [18]. Among
these promising materials candidates, PCMs are already tech-
nologically mature, and have been commercialized recently
[19]. The basic working principle is to utilize the rapid
switching capability of PCM, in particular, Ge2Sb2Te5 (GST),
between its crystalline state and amorphous phase for memory
programming [7–12]. The logic states ‘0’ and ‘1’ are defined
by the large contrast in electrical resistance [20–23] or optical
reflectance/transmission [24–28] of the two solid states, which
originate from a fundamental change in electronic structure
and bonding character upon phase transition [29–32].

The crystallization (SET) or amorphization (RESET) of
GST proceeds via Joule heating brought by external pulses.
To amorphize the crystalline state, the rigid lattice needs to
be melted down first. This step is the bottleneck in terms of
energy cost, because of the high melting temperature of GST
(∼900 K). Device miniaturization with proper thermal insu-
lations is typically used to reduce power consumption [33].
But conventional GST devices still require tens of picojoules
to nanojoules for each RESET operation. In 2011, Xiong et al
managed to deposit GST into the nanogaps between carbon
nanotubes (serving as electrodes), which drastically reduced
the switching volume, leading to ∼100 femtojoules per

RESET operation [34]. Further optimization was made by
using GST nanowires and carbon nanotubes electrodes in
2013, reaching a RESET energy of ∼80 femtojoules [35].
In 2022, Wang et al have developed a more realistic
approach to reduce the active switching volume of GST for
integrated devices with an ultrascaled edge-electrode using
very narrow graphene nanoribbons embedded in hexagonal
boron nitride multilayer, reaching ∼54 femtojoules per
RESET operation [36].

In parallel to these device miniaturization schemes, much
progress has also been made in designing new materials
to achieve low-power operations while keeping the device
structure unchanged. By alloying Sb2Te3, the parent phase
of GST, with various transition metal dopants, such as
scandium [37–45], yttrium [46–50], titanium [51–54] and
others [55–57], the RESET energy can be reduced by approx-
imately one order of magnitude as compared to GST in the
same device condition. This could be generally attributed to
the easier disordering (melting) of the rocksalt-like lattice
with higher concentration of atomic vacancies [37]. Another
effective approach is to replace the homogeneous switching
medium with the GeTe/Sb2Te3 superlattice [58–65] or the
TiTe2/Sb2Te3 heterostructure [66–71]. The working mechan-
ism of the former is still under debate, while the latter fea-
tures a quasi-two-dimensional switching of Sb2Te3 under con-
finement of robust TiTe2 crystalline nanolayers. The melting
of only the Sb2Te3 nanolayers and the high thermal barrier
brought by the TiTe2 walls also result in about one order of
magnitude reduction in RESET energy [66]. Sub-picojoule
amorphization energy was also reported by using a Cr2Ge2Te6
layered material [72].

In early 2022, we have designed a conductive-bridge
phase-change memory (cbPCM) scheme [73] that combines
the advantages of phase-change memory with filamentary-
switching in metal oxides. The essential idea is to minimize
the active switching volume in conventional devices via phase
separation. Under external stimulus, e.g. heating or electrical
pulses, the switching medium spontaneously decomposes into
a heterogeneous network with domains having different crys-
tallization temperature, Tx. As sketched in figure 1(a), a con-
ductive path forms in the amorphous matrix (high Tx) by
crystallizing only the nanobridges between different crystal-
line nanodomains (low Tx). In [73], we chose to incorporate
oxygen into Ge-Sb alloys [74–76] to increase their tendency
to self-decompose into Ge-enriched and Sb-enriched regions
intermingled in a network, and have achieved an average
RESET energy of∼43 femtojoules per operation using a set of
Ge-Sb-O (GSO) devices. The essential ingredient that makes
functional GSO devices is the oxygen content in the alloy,
which however requires very careful control and calibration.
In this work, we monitor the degree of oxidation during the
alloy film deposition process and show that the concentration
of oxygen has to be maintained at a relatively low level; other-
wise, inside a heavily oxidized amorphous matrix it would no
longer be feasible to create a conductive path.
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Figure 1. Tailoring the degree of oxygen incorporation in Ge-Sb-O alloys. (a) The sketch of a potential conductive path inside the
heterogeneous network consisting of Sb-rich crystalline nanodomains and Sb-poor glass matrix. (b) Schematic depicting the sputtering of a
Ge15Sb85 alloy target with varied O2 flux under a protective atmosphere (Argon), resulting in oxygen incorporation to various levels.

2. Results and discussion

We deposited various GSO thin films of ∼100 nm thick-
ness using a high-purity Ge15Sb85 alloy target under O2 flow
on silicon/silica substrate through direct current magnetron
sputtering at room temperature, as sketched in figure 1(b). The
sputtering power was set as 30 W and deposition rate was cal-
ibrated as ∼100 nm min−1. The O2 flow rate was adjusted
from 0 to 12.5 sccm under protective Ar flow of 50 sccm. The
pressure of the chamber was 0.5 Pa. A ∼5 nm ZnS-SiO2 cap-
ping layer was also deposited to prevent further oxidation at
the surface. The five GSO thin films under O2 flow rate= 0, 2,
5, 7.5 and 12.5 sccmwere then used for electrical resistance, x-
ray diffraction (XRD) pattern, Raman spectroscopy and x-ray
photoelectron spectroscopy (XPS) and energy-dispersive
spectroscopy (EDS) measurements.

The temperature-dependent electrical resistance (R-T)
measurements were made using the van der Pauw method.
Figure 2(a) shows the change in sheet resistance of the five
thin films upon heating with a heating rate of 10 ◦C min–1.
With moderate oxygen doping below 7.5 sccm, the GSO thin
films show a similar R-T profile as compared to the undoped
Ge15Sb85 thin film [77–79] with a clear drop at Tx ∼ 235 ◦C,
indicating the onset of crystallization. Yet, a gradual increase
in resistance is observed for both the initial amorphous phase
and the annealed phase at 300 ◦C as the oxygen concentration
increases. A clear deviation in the R-T profile is observed in
the heavily doped GSO thin film (12.5 sccm), which shows a
higher Tx ∼ 260 ◦C and a much larger sheet resistance value
at 300 ◦C as compared to the other four thin films.

To assess the structural properties of the thin films after
heating, we carried out XRD measurements at room temper-
ature. As displayed in figure 2(b), the undoped Ge15Sb85 thin

film shows major reflections at (003), (101), (006) and (202),
corresponding to the rhombohedral phase of Sb-rich domains
[79]. The four GSO thin films also crystallized in the rhombo-
hedral phase with Sb-rich grains, despite the change in crystal-
lographic orientation, showing major reflections at (012) and
(110). The (012) peak is gradually broadened as the oxygen
level increases, indicating increased structural disorder upon
the introduction of oxygen. No sign of pure Ge nor GeO2 crys-
tallites was observed in the annealed GSO thin films.

Figure 2(c) shows the Raman spectroscopy measurements
(using an excitation laser wavelength of 532 nm) of the
annealed thin films in the range of 100–250 cm−1. In the
undoped case, the peaks in 115 cm−1 and 155 cm−1 cor-
respond to the Eg and A1g modes of rhombohedral Sb [80].
The two peaks merged gradually with the increase of oxygen
alloying. To understand this behavior, we used two Lorentzian
functions to fit the spectra between 100 cm−1 and 175 cm−1

and evaluate the full-width half maximum (FWHM) values
and peak positions of the two modes. The sum of fitted curve
is marked by red dash-dot line, the fitted Eg and A1g modes
are indicated by green and blue lines, respectively. The cor-
responding FWHM values and peak positions are given in
figure 2(d), which shows that oxygen doping induces a pro-
nounced broadening of the Eg mode with FWHM increas-
ing from 14 cm−1–29 cm−1, and also a slight broadening
of the A1g mode. In addition, opposite shift in the peak
position is found in the Eg mode (blue shift) and the A1g

mode (red shift), leading to a progressive merging of the
two peaks.

In general, crystalline phase of high uniformity in terms of
bond angles and lengths results in a limited number of vibra-
tion states, and hence sharp Raman peaks at characteristic
wavenumbers. In contrast, amorphous phase with disordered
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Figure 2. Electrical and structural characterizations of GSO thin films. (a) The resistance-temperature (R-T) curves of Ge15Sb85 and four
GSO thin films upon heating. (b) The room temperature XRD pattern measurements of the five annealed thin films obtained after R-T
measurements done at 300 ◦C. (c) The Raman spectra of the annealed thin films in the range of 100 and 250 cm−1. The fitted Eg and A1g

modes are marked in green and blue, respectively. (d) The corresponding peak positions and FWHM values.

atomic arrangement exhibits a much wider range of bond
angles and bond lengths, and the distribution of possible states
leads to broader Raman peaks [81–84]. In our measurements,
the enlarged FWHM values of the Eg and A1g mode indic-
ate an incomplete crystallization with oxygen doping, des-
pite thermal annealing at relatively high temperatures. This
behavior can be attributed to the much higher crystalliza-
tion temperatures of oxides, e.g. the GeO2 glass has a Tx

above 700 ◦C [85].
To gain a better understanding of the amorphous phase, we

carried out XPS measurements on the as-deposited thin films.
All binding energies were corrected with respect to the C 1 s
peak. Figure 3(a) shows the Ge 2p spectra with the binding
energy range between 1210–1225 eV. In undoped Ge15Sb85,
the peak of Ge 2p3/2 is detected at ∼1218 eV, corresponding
to the Ge homopolar bonds (Ge–Ge) [86]. Even with a relat-
ively low doping level of oxygen (2 sccm), the Ge–Ge peak is
already weakened, and a distinct peak of Ge–O at ∼1220 eV
is identified. As the oxygen doping increases to 5 sccm, the
Ge–Ge peak is no longer visible, leaving only the GeO2 peak.
Figure 3(b) shows the Sb 3d spectra between 525–545 eV. The
Sb 3d spectrum of undoped Ge15Sb85 exhibits two contribu-
tions, 3d5/2 and 3d3/2, due to the spin-orbit splitting, which are
located at ∼528 eV and ∼538 eV, respectively. Small Sb-O
contributions start to appear at ∼531 eV and ∼540 eV in the

GSO thin film obtained under 5 sccm oxygen flux, stemming
from the formation of Sb2O3 [87]. The two peaks are further
enhanced as oxygen doping level increases.

This two-step oxidation process can be explained by the
stronger tendency to form germanium oxides, as their form-
ation energy is much more favorable than that of antimony
oxides [73]. Unlike germanium, antimony is the main com-
ponent of the thin film, hence the Sb–Sb peaks still remain
high even in the heavily doped GSO thin film (12.5 sccm). But
if the major fraction of antimony is also oxidized, no sign of
crystallization can be observed below 300 ◦C [76]. To design
readily switchable conductive bridges, we need to keep a low
Tx for the Sb-rich domains so that they can be easily crys-
tallized with external thermal or electrical stimulus. There-
fore, excessive oxygen content in antimony should be pre-
vented. From the above analyses, we regard 2–5 sccm as the
suitable oxygen flow rate range for sputtering Ge15Sb85, and
such flow rates should be further reduced if a Sb-richer alloy
target is used. With high oxygen flow rate (12.5 sccm), the
oxygen concentration in these GSO thin films was estimated
to exceed 35 at% by EDS measurements, while less oxygen
was incorporated into the thin films in the range of 10–16 at%
at 2–5 sccm. The latter is compatible with that reported
in [73], ∼16 at%, which was determined by atom-probe
tomography measurements.
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Figure 3. High-resolution XPS spectra of (a) Ge 2p3/2 and (b) Sb 3d for as-deposited Ge15Sb85 thin films prepared under different oxygen
flux. The blue and green regions represent the fitting of different components, and the sum of fitted curves are marked by red dash-dot line.

Figure 4. Electrical performance of the GSO devices. (a) Schematic of the experimental setup for electrical testing of GSO devices in a
probe station. (b) and (c) The current–voltage (I–V) characteristics of the GSO devices with heavy and light oxygen doping by DC sweeps.
(d) The resistance-voltage (R–V) characteristics of the 2 sccm GSO device under RESET operation. The applied pulse waveform is shown
in the inset.

For validation, we fabricated two GSO devices with light
and heavy oxygen doping. Figure 4(a) shows the device struc-
ture. A hole with diameter of ∼250 nm was etched in a
∼100 nm thick SiO2 dielectric layer, and the Ge15Sb85 tar-
get was sputtered under oxygen flow rate of 2 and 12.5 sccm

for the two devices. The devices were covered with a ∼50 nm
tungsten electrode thin layer to prevent further oxidation.
Then we applied DC sweeps to the two devices to pattern the
heterogeneous network. As seen in the current–voltage (I–V)
profiles, the heavily O-doped GSO device showed a highly
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Figure 5. The sketch of different working modes as the oxygen concentration in GSO alloys increases. Upon SET operation, the ratio of
crystalline/amorphous domains varies significantly as a function of oxygen concentration.

resistive behavior up to 10 µA (figure 4(b)), while the other
device was switched to a low-resistance state at∼3.25 µA, and
the subsequent DC sweep confirmed the conductive nature of
the latter device (figure 4(c)). The former device is regarded
as a RESET-stuck failure, due to over-oxidation. Figure 4(d)
shows a typical RESET operation of GSO device with suitable
oxygen doping. To guarantee a low RESET energy ERESET =
I×U×∆t= U2

RESET ×∆t/RSET, it is desirable to have a SET
state with relatively high resistance [73], e.g. 7.5 MΩ in this
case. By applying a series of voltage pulses with ∆t = 50 ns
(FWHM), the resistance of the device increased to more than
40MΩ at∼2.5 V. The RESET energy is estimated as∼41.6 fJ,
close to the average value reported in [73].

Figure 5 summarizes how to enable the cbPCM work-
ing mode via oxidation. With low-level oxygen incorporation,
amorphous GSO alloys get crystallized almost completely
upon SET operation. The potential presence of amorphous
domains due to oxidation can hardly alter the electrical per-
formance of GSO devices, as the electric current can pass
through the crystalline matrix easily. The switching of GSO
proceeds in the conventional PCMmode. Regarding the heav-
ily oxidized case, the vast majority of germanium and anti-
mony atoms form strong bonds with oxygen atoms. The high
crystallization temperature of GeO2 and Sb2O3 makes the
glass domains insensitive to SET pulses. Therefore, GSO
devices get stuck in the high-resistance state, and cannot be
programmed. Only with moderate-level oxygen incorpora-
tion, GSO devices can function in the cbPCM mode with
robust GeO2-dominant glass domains and Sb-rich crystal-
line domains so that the nanobridges in between can be
effectively switched. To achieve this goal, the formation of
antimony oxides in large fractions must be avoided, and
it is important to use an alloy target with relatively high

germanium concentration, such as Ge15Sb85, for sputtering to
guarantee the abundance of germanium oxides glass in the
heterogeneous network.

3. Conclusions

In summary, we have reported a thorough experimental char-
acterization of the self-decomposed GSO alloys for low-power
phase-change memory application. We have tailored the oxy-
gen concentration in the Ge15Sb85 thin films and revealed
a two-step oxidation process as the doping level gradually
increased. We note that the relatively rich germanium con-
centration and moderate oxygen doping are essential to build
the heterogeneous network with an intermixed GeO2 glass
domains and Sb-rich crystalline domains, allowing the forma-
tion of conductive path under external electrical stimulus. This
spontaneous decomposition in the GSO alloy reduces the act-
ive switching volume sharply despite large contact areas with
electrodes, as only parts of the conductive bridge need to be
melted upon RESET pulsing.We note that this cbPCM scheme
inevitably introduces certain randomness for device program-
ming, as the formation of heterogeneous network differs from
device to device. In addition to binary storage, heterogeneous
PCMs could also be useful for the emulation of stochastic
phase-change neurons [88] and for the development of
physical unclonable functions [89].
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